石油化工安全环保技术 ›› 2024, Vol. 40 ›› Issue (5): 39-43.

• 事故分析与预防 • 上一篇    

小管径管道弯头缺陷漏磁信号量化方法

夏子龙1,张颖1,何战友2,赵鹏程1   

  1. 1. 常州大学,江苏 常州 213164;
    2. 中国石油天然气股份有限公司长庆油田分公司,陕西 西安 710018
  • 收稿日期:2023-08-14 接受日期:2024-09-15 出版日期:2024-10-20 发布日期:2024-10-30
  • 作者简介:夏子龙,男,现为常州大学安全工程专业在读硕士研究生,主要研究领域为特种设备健康监测及智能诊断。电话:18860823865,E-mail :xzl2512@163.com

Quantification of Magnetic Flux Leakage Signal from Elbow Defect in Pipes with Small Diameter

Xia Zilong1, Zhang Ying1, He Zhanyou2, Zhao Pengcheng1   

  1. 1. Changzhou University, Changzhou, Jiangsu, 213164
    2. PetroChina Changqing Oilfield Company, Xi’an, Shaanxi, 710018
  • Received:2023-08-14 Accepted:2024-09-15 Online:2024-10-20 Published:2024-10-30

摘要: 漏磁内检测器通过小管径弯头部位时提离值发生改变,检测的缺陷漏磁信号与直管有较大差异性,传统量化方法的适用性有待研究。通过建立弯头及直管的三维漏磁仿真模型,获取三轴缺陷漏磁信号,并提取其中的多模态特征参数以构建样本库,再将特征样本作为输入融合粒子群优化的动态神经网络,分别构建弯头和直管量化模型,以建立漏磁信号与缺陷尺寸的三维映射关系。研究结果表明:本量化方法对弯头缺陷长度、深度和宽度的量化准确率分别达到94.2%、94.4% 和95.0%,结果优于BP 神经网络,可为小管径弯头缺陷量化提供一定依据。

关键词: 小管径弯头, 缺陷量化, 漏磁检测, 粒子群优化, 神经网络模型, 多模态特征

Abstract: When the magnetic flux leakage (MFL) internal detector passes through the elbow of the pipe with small diameter, the lifting-off value of the detector changes and the detected MFL signal is quite different from that of the straight pipe. Therefore, it is necessary to study the applicability of the traditional quantization method. Based on the MFL simulation model of straight pipe and elbow, a set of three-axis MFL signals of defects with different specifications are obtained. Then, a multiple hybrid feature dataset is constructed and used as input to fuse the PSO-ELMAN model. After that, the quantization methods for elbows and straight pipes are constructed separately to establish the three-dimensional mapping relationship between magnetic flux leakage signal and defect size. The research results indicate that the quantization accuracy of PSO-ELMAN model in length, depth and width of elbow defect reached 98.6%, 98.3% and 97.9% respectively, which is better than the results obtained from the adoption of BP neural network. This study can provide some basis for quantification of elbow defects of pipes with small diameter.

Key words: pipe elbow with small diameter, defect quantification, magnetic flux leakage detection, particle swarm optimization, neural network model, multimodal features