石油化工安全环保技术 ›› 2025, Vol. 41 ›› Issue (3): 17-21.

• 安全与环保管理 • 上一篇    

基于动态贝叶斯网络的大牛地气田长输管道泄漏演化与风险评估

寇晓飞   

  1. 中国石化股份有限公司华北油气分公司,河南 郑州 450006
  • 收稿日期:2024-12-17 接受日期:2025-05-15 出版日期:2025-06-20 发布日期:2025-07-09
  • 作者简介:寇晓飞,男, 2023 年毕业于西安建筑科技大学资源与环境专业,硕士,现在中国石化股份有限公司华北油气分公司从事安全环保管理工作,助理工程师。电话: 18091112457, E-mail 1114934166@qq.com

Leakage Evolution and Risk Assessment of LongDistance Pipelines in Daniudi Gas Field Based on Dynamic Bayesian Network

Kou Xiaofei   

  1. SINOPEC North China Oil & Gas Branch Company, Zhengzhou, Henan, 450006
  • Received:2024-12-17 Accepted:2025-05-15 Online:2025-06-20 Published:2025-07-09

摘要: 为有效预防大牛地气田长输管道泄漏事故的风险,提出一种基于 BN 的动态风险评估方法。首先,识别了气田长输管道泄漏事故过程中的风险因素,用事件序列图方法描述管道泄漏演化的后果。然后,构建描述管道泄漏演化失效的 DBN 模型,通过引入模糊集理论量化不确定性因素的基本事件概率,动态捕捉了管道泄漏事故的风险演变特征。最后,运用事故动态概率分析来评估气田长输管道泄漏事故的风险概率。结果表明:该方法能够高效地识别出大牛地气田长输管道泄漏事故的关键风险因素,并实现了对气田长输管道的动态风险评估。

关键词: 大牛地气田, 动态贝叶斯网络, 风险评估, 敏感性分析

Abstract: In order to effectively address the risk management challenges in preventing leakage accidents in the long-distance pipelines of Daniudi Gas Field, this study proposes a dynamic risk assessment method based on Bayesian Network (BN). First, risk factors in the leakage accident process of gas field pipelines were identified and the consequences of leakage evolution were visualized using the Event Sequence Diagram method. Subsequently, a Dynamic Bayesian Network (DBN) model was developed to characterize the pipeline leakage failure evolution. By incorporating fuzzy set theory to quantify the basic event probabilities of uncertain factors, the model dynamically captured the risk evolution characteristics of pipeline leakage accidents. Finally, dynamic probability analysis of accidents was employed to evaluate the risk probability of pipeline leakage in the gas field. The results indicate that this method can efficiently identify the critical risk factors of leakage accidents in Daniudi Gas Field pipelines and has realized the dynamic risk assessment of long-distance pipelines in the gas field.

Key words: Daniudi gas field, dynamic Bayesian network (DBN), risk assessment, sensitivity analysis